Transplantatation of scaffold-free spheroids composed of synovium-derived cells and chondrocytes for the treatment of cartilage defects of the knee.
نویسندگان
چکیده
Autologous chondrocyte implantation (ACI) is the treatment of choice for osteoarthritis. However, to regenerate articular cartilage using this method, the procedure paradoxically demands that the cell source of the articular chondrocytes (ACs) for ex vivo expansion be from the patient's own healthy cartilage, which can result in donor site morbidity. Accordingly, it is essential to develop a substitute for AC. In the present study, we investigated whether synovium-derived cells (SYs) could be used as a partial replacement for ACs in ACI. ACs and SYs from the knees of rabbits were isolated and cultured, and the growth rates of the cells were compared. To manufacture the cellular transplants, we developed a high-density suspension-shaking culture method (HDSS), which circulates the cells in culture media, promoting self-assembly of scaffold-free cellular aggregates. ACs and SYs were mixed in various ratios using HDSS. Injectable cellular transplants were harvested and transplanted into full-thickness osteochondral defects. Simultaneously, histological evaluations were conducted with toluidine blue and safranin O, and immunohistochemistry of collagen type I and II was conducted. Gene expression to evaluate chondrocyte-specific differentiation was also performed. We successfully prepared a large quantity of spheroids (spheroidal cell aggregates) in a short time using mixed ACs and SYs, for all cellular composition ratios. Our data showed that the minimal therapeutic unit for the transplants contributed to in situ regeneration of cartilage. In summary, SYs can be used as a replacement for ACs in clinical cases of ACI in patients with broad areas of osteoarthritic lesions.
منابع مشابه
Partial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملComparison between Chondrogenic Markers of Differentiated Chondrocytes from Adipose Derived Stem Cells and Articular Chondrocytes In Vitro
Objective(s): Osteoarthritis is one of the most common diseases in middle-aged population in the world. Cartilage tissue engineering (TE) has been presented as an effort to introduce the best combination of cells, biomaterial scaffolds and stimulating growth factors to produce a cartilage tissue similar to the natural articular cartilage. In this study, the chondrogenic potential of adipose d...
متن کاملConditioned medium derived from mesenchymal Stem cells regenerates’ defected articular cartilage
Background & Aims: One of cell- based technical issues associated with cartilage repair assay is delivering cells to the site of the parts where damage is created. Mesenchymal stem cells (MSCs) with their chondrogenic potential are ideal candidates for cartilage regeneration. High expression of cartilage hypertrophy markers by MSCs would result in apoptosis and ossification. This investigation ...
متن کاملHigh Quality of Infant Chondrocytes in Comparison with Adult Chondrocytes for Cartilage Tissue Engineering
BACKGROUND Tissue engineering is used for the treatment of many diseases, and the ideal cell source for cartilage tissue engineering is chondrocytes. The main limitation of chondrocyte is the low number of cells in cartilage tissue engineering. This study investigated a suitable cell source with high proliferation rate to obtain a large number of chondrocytes. METHODS Adult cartilage t...
متن کاملA Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering
Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- European cells & materials
دوره 22 شماره
صفحات -
تاریخ انتشار 2011